Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Microb Cell Fact ; 23(1): 98, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561780

RESUMO

BACKGROUND: Bacteria of the genus Photorhabdus and Xenorhabdus are motile, Gram-negative bacteria that live in symbiosis with entomopathogenic nematodes. Due to their complex life cycle, they produce a large number of specialized metabolites (natural products) encoded in biosynthetic gene clusters (BGC). Genetic tools for Photorhabdus and Xenorhabdus have been rare and applicable to only a few strains. In the past, several tools have been developed for the activation of BGCs and the deletion of individual genes. However, these often have limited efficiency or are time consuming. Among the limitations, it is essential to have versatile expression systems and genome editing tools that could facilitate the practical work. RESULTS: In the present study, we developed several expression vectors and a CRISPR-Cpf1 genome editing vector for genetic manipulations in Photorhabdus and Xenorhabdus using SEVA plasmids. The SEVA collection is based on modular vectors that allow exchangeability of different elements (e.g. origin of replication and antibiotic selection markers with the ability to insert desired sequences for different end applications). Initially, we tested different SEVA vectors containing the broad host range origins and three different resistance genes for kanamycin, gentamycin and chloramphenicol, respectively. We demonstrated that these vectors are replicative not only in well-known representatives, e.g. Photorhabdus laumondii TTO1, but also in other rarely described strains like Xenorhabdus sp. TS4. For our CRISPR/Cpf1-based system, we used the pSEVA231 backbone to delete not only small genes but also large parts of BGCs. Furthermore, we were able to activate and refactor BGCs to obtain high production titers of high value compounds such as safracin B, a semisynthetic precursor for the anti-cancer drug ET-743. CONCLUSIONS: The results of this study provide new inducible expression vectors and a CRISPR/CPf1 encoding vector all based on the SEVA (Standard European Vector Architecture) collection, which can improve genetic manipulation and genome editing processes in Photorhabdus and Xenorhabdus.


Assuntos
Produtos Biológicos , Photorhabdus , Xenorhabdus , Xenorhabdus/genética , Xenorhabdus/metabolismo , Photorhabdus/genética , Edição de Genes , Produtos Biológicos/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
2.
Pest Manag Sci ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619291

RESUMO

BACKGROUND: In the perpetual struggle to manage mosquito populations, there has been increasing demand for the development of biopesticides to supplant/complement current products. The insecticidal potential of Xenorhabdus and Photorhabdus has long been recognized and is of interest for the control of important mosquitoes like Aedes albopictus which vectors over 20 different arboviruses of global public health concern. RESULTS: The larvicidal effects of cell-free supernatants, cell growth cultures and cell mass of an extensive list of Xenorhabdus and Photorhabdus spp. was investigated. They were quite effective against Ae. albopictus causing larval mortality ranging between 52-100%. Three Photorhabdus spp. and 13 Xenorhabdus spp. release larvicidal compounds in cell-free supernatants. Cell growth culture of all tested species exhibited larvicidal activity, except for Xenorhabdus sp. TS4. Twenty-one Xenorhabdus and Photorhabdus bacterial cells (pellet) exhibited oral toxicity (59-91%) against exposed larvae. The effect of bacterial supernatants on the mosquito eggs were also assessed. Bacterial supernatants inhibited the hatching of mosquito eggs; when unhatched eggs were transferred to clean water, they all hatched. Using the easyPACId approach, the larvicidal compounds in bacterial supernatant were identified as fabclavine from X. szentirmaii and xencoumacin from X. nematophila (causing 98 and 70% mortality, respectively, after 48 h). Xenorhabdus cabanillasii and X. hominickii fabclavines were as effective as commercial Bacillus thuringiensis subsp. israelensis and spinosad products within 5 days post-application (dpa). CONCLUSION: Fabclavine and xenocoumacin can be developed into novel biolarvicides, can be used as a model to synthesize other compounds or/and can be combined with other commercial biolarvicides. This article is protected by copyright. All rights reserved.

3.
J Fungi (Basel) ; 10(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38535184

RESUMO

Sclerotinia sclerotiorum (Lib.) de Bary, a polyphagous necrotrophic fungal pathogen, has brought about significant losses in agriculture and floriculture. Until now, the most common method for controlling S. sclerotiorum has been the application of fungicides. Xenocoumacin 1 (Xcn1) is a potential biopesticide having versatile antimicrobial activities, generated by Xenorhabdus nematophila. This study was intended to isolate Xcn1 from X. nematophila YL001 and clarify its efficacies for S. sclerotiorum control. Xcn1 demonstrated a wider antifungal spectrum against 10 plant-pathogenic fungi. It also exhibited a strong inhibitory effect on the mycelial growth of S. sclerotiorum with an EC50 value of 3.00 µg/mL. Pot experiments indicated that Xcn1 effectively inhibited disease extension on oilseed rape and broad bean plants caused by S. sclerotiorum. Morphological and ultrastructural observations revealed that the hyphae of S. sclerotiorum became twisted, shriveled, and deformed at the growing points after treatment with Xcn1 at 3.00 µg/mL and that the subcellular fractions also became abnormal concurrently, especially the mitochondrial structure. Moreover, Xcn1 also increased cell membrane permeability and decreased the content of exopolysaccharide as well as suppressing the activities of polygalacturonase and cellulase of S. sclerotiorum, but exerted no effects on oxalic acid production. This study demonstrated that Xcn1 has great potential to be developed as a new biopesticide for the control of S. sclerotiorum.

4.
Toxins (Basel) ; 16(2)2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38393187

RESUMO

Entomopathogenic nematodes from the genus Steinernema (Nematoda: Steinernematidae) are capable of causing the rapid killing of insect hosts, facilitated by their association with symbiotic Gram-negative bacteria in the genus Xenorhabdus (Enterobacterales: Morganellaceae), positioning them as interesting candidate tools for the control of insect pests. In spite of this, only a limited number of species from this bacterial genus have been identified from their nematode hosts and their insecticidal properties documented. This study aimed to perform the genome sequence analysis of fourteen Xenorhabdus strains that were isolated from Steinernema nematodes in Argentina. All of the strains were found to be able of killing 7th instar larvae of Galleria mellonella (L.) (Lepidoptera: Pyralidae). Their sequenced genomes harbour 110 putative insecticidal proteins including Tc, Txp, Mcf, Pra/Prb and App homologs, plus other virulence factors such as putative nematocidal proteins, chitinases and secondary metabolite gene clusters for the synthesis of different bioactive compounds. Maximum-likelihood phylogenetic analysis plus average nucleotide identity calculations strongly suggested that three strains should be considered novel species. The species name for strains PSL and Reich (same species according to % ANI) is proposed as Xenorhabdus littoralis sp. nov., whereas strain 12 is proposed as Xenorhabdus santafensis sp. nov. In this work, we present a dual insight into the biocidal potential and diversity of the Xenorhabdus genus, demonstrated by different numbers of putative insecticidal genes and biosynthetic gene clusters, along with a fresh exploration of the species within this genus.


Assuntos
Mariposas , Nematoides , Xenorhabdus , Animais , Xenorhabdus/genética , Filogenia , Argentina , Nematoides/genética , Mariposas/genética , Análise de Sequência , Simbiose
5.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321949

RESUMO

Toxin-antitoxin (TA) modules, initially discovered on bacterial plasmids and subsequently identified within chromosomal contexts, hold a pivotal role in the realm of bacterial physiology. Among these, the pioneering TA system, ccd (Control of Cell Death), primarily localized on the F-plasmid, is known for its orchestration of plasmid replication with cellular division. Nonetheless, the precise functions of such systems within bacterial chromosomal settings remain a compelling subject that demands deeper investigation. To bridge this knowledge gap, our study focuses on exploring ccdABXn2, a chromosomally encoded TA module originating from the entomopathogenic bacterium Xenorhabdus nematophila. We meticulously delved into the system's genomic assignments, structural attributes, and functional interplay. Our findings uncovered intriguing patterns-CcdB toxin homologs exhibited higher conservation levels compared to their CcdA antitoxin counterparts. Moreover, we constructed secondary as well as tertiary models for both the CcdB toxin and CcdA antitoxin using threading techniques and subsequently validated their structural integrity. Our exploration extended to the identification of key interactions, including the peptide interaction with gyrase for the CcdB homolog and CcdB toxin interactions for the CcdA homolog, highlighting the intricate TA interaction network. Through docking and simulation analyses, we unequivocally demonstrated the inhibition of replication via binding the CcdB toxin to its target, DNA gyrase. These insights provide valuable knowledge about the metabolic and physiological roles of the chromosomally encoded ccdABXn2 TA module within the context of X. nematophila, significantly enhancing our comprehension of its functional significance within the intricate ecosystem of the bacterial host.Communicated by Ramaswamy H. Sarma.

6.
World J Microbiol Biotechnol ; 40(3): 101, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366186

RESUMO

Xenorhabdus, known for its symbiotic relationship with Entomopathogenic nematodes (EPNs), belongs to the Enterobacteriaceae family. This dual-host symbiotic nematode exhibits pathogenic traits, rendering it a promising biocontrol agent against insects. Our prior investigations revealed that Xenorhabdus stockiae HN_xs01, isolated in our laboratory, demonstrates exceptional potential in halting bacterial growth and displaying anti-tumor activity. Subsequently, we separated and purified the supernatant of the HN_xs01 strain and obtained a new compound with significant inhibitory activity on tumor cells, which we named XNAE. Through LC-MS analysis, the mass-to-nucleus ratio of XNAE was determined to be 254.24. Our findings indicated that XNAE exerts a time- and dose-dependent inhibition on B16 and HeLa cells. After 24 h, its IC50 for B16 and HeLa cells was 30.178 µg/mL and 33.015 µg/mL, respectively. Electron microscopy revealed conspicuous damage to subcellular structures, notably mitochondria and the cytoskeleton, resulting in a notable reduction in cell numbers among treated tumor cells. Interestingly, while XNAE exerted a more pronounced inhibitory effect on B16 cells compared to HeLa cells, it showed no discernible impact on HUVEC cells. Treatment of B16 cells with XNAE induced early apoptosis and led to cell cycle arrest in the G2 phase, as evidenced by flow cytometry analysis. The impressive capability of X. stockiae HN_xs01 in synthesizing bioactive secondary metabolites promises to significantly expand the reservoir of natural products. Further exploration to identify the bioactivity of these compounds holds the potential to shed light on their roles in bacteria-host interaction. Overall, these outcomes underscore the promising potential of XNAE as a bioactive compound for tumor treatment.


Assuntos
Nematoides , Xenorhabdus , Animais , Humanos , Xenorhabdus/metabolismo , Células HeLa , Nematoides/microbiologia , Enterobacteriaceae , Simbiose
7.
J Fungi (Basel) ; 10(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38392820

RESUMO

Fungal diseases such as Fusarium head blight (FHB) are significant biotic stressors, negatively affecting wheat production and quality. This study explored the antifungal activity of the metabolites produced by the bacterial symbionts of entomopathogenic nematodes (EPNs) against FHB-causing Fusarium sp. Fusarium graminearum. To achieve this, the symbiotic bacteria of nine EPN isolates from the EPN collection at the Agricultural Research Council-Small Grains (ARC-SG) were isolated from the cadavers of Galleria mellonella (Lepidoptera: Pyralidae) larvae after infection with EPNs. Broth cultures (crude) and their supernatants (filtered and autoclaved) of each bacterial isolate were used as bacterial metabolite treatments to test their inhibitory effect on the mycelial growth and spore germination of F. graminearum. Mycelial growth inhibition rates varied among both bacterial isolates and treatments. Crude metabolite treatments proved to be more effective than filtered and autoclaved metabolite treatments, with an overall inhibition rate of 75.25% compared to 23.93% and 13.32%, respectively. From the crude metabolite treatments, the Xenorhabdus khoisanae SGI 197 bacterial isolate from Steinernema beitlechemi SGI 197 had the highest mean inhibition rate of 96.25%, followed by Photorhabdus luminescens SGI 170 bacteria isolated from Heterorhabditis bacteriophora SGI 170 with a 95.79% mean inhibition rate. The filtered metabolite treatments of all bacterial isolates were tested for their inhibitory activity against Fusarium graminearum spore germination. Mean spore germination inhibition rates from Xenorhabdus spp. bacterial isolates were higher (83.91 to 96.29%) than those from Photorhabdus spp. (6.05 to 14.74%). The results obtained from this study suggest that EPN symbiotic bacterial metabolites have potential use as biological control agents of FHB. Although field efficacy against FHB was not studied, the significant inhibition of mycelial growth and spore germination suggest that the application of these metabolites at the flowering stage may provide protection to plants against infection with or spread of F. graminearum. These metabolites have the potential to be employed as part of integrated pest management (IPM) to inhibit/delay conidia germination until the anthesis (flowering stage) of wheat seedlings has passed.

8.
J Invertebr Pathol ; 203: 108075, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350523

RESUMO

Colorado Potato Beetle (CPB) is one of the most destructive potato pests that can quickly develop resistance to insecticides. Therefore, new safe and effective control strategies that are less susceptible to the development of resistance by CPB are urgently needed. Due to their complex mode of action, the likelihood of resistance development by target pests is generally low with antifeedants. In the present study, we assessed the effect of secondary metabolites of various Xenorhabdus bacteria species and strains on CPB adult feeding and on larval development. The metabolites were applied in the form of cell free supernatants (CFSs) from Xenorhabdus cultures. In bioassay 1, leaves treated with ten Xenorhabdus cultures were fed to CPB adults, and their feeding was assessed daily for one week. In bioassay 2, CPB egg masses were placed on the leaves treated with five bacterial cultures, and larval development to pupae was monitored. Out of the ten Xenorhabdus cultures tested, two strains exhibited a significant reduction in the feeding behavior of Colorado Potato Beetle adults, with reductions of up to 70% compared to the control. The effect of CFSs on larval development was variable, and when treated with X. khoisanae SGI 197, over 90% of larvae died in the first few days before reaching the 2nd instar, and complete mortality was achieved on the 8th day of the experiment. Our study is the first study to demonstrate the antifeedant effect of Xenorhabdus cultures towards herbivorous beetles, and the metabolites of these bacteria may have potential for CPB control. Clearly, the metabolites produced by X. khoisanae SGI-197 may be a promising tool for CPB larvae control with the potential to significantly decrease damage to potato plants.


Assuntos
Besouros , Solanum tuberosum , Xenorhabdus , Animais , Larva , Bactérias
9.
Toxins (Basel) ; 16(1)2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38251242

RESUMO

Xenorhabdus and Photorhabdus, bacterial symbionts of entomopathogenic nematodes Steinernema and Heterorhabditis, respectively, have several biological activities including insecticidal and antimicrobial activities. Thus, XnChi, XhChi, and PtChi, chitinases of X. nematophila, X. hominickii, and P. temperata isolated from Korean indigenous EPNs S. carpocapsae GJ1-2, S. monticolum GJ11-1, and H. megidis GJ1-2 were cloned and expressed in Escherichia coli BL21 to compare their biological activities. Chitinase proteins of these bacterial symbionts purified using the Ni-NTA system showed different chitobiosidase and endochitinase activities, but N-acetylglucosamidinase activities were not shown in the measuring of chitinolytic activity through N-acetyl-D-glucosarmine oligomers. In addition, the proteins showed different insecticidal and antifungal activities. XnChi showed the highest insecticidal activity against Galleria mellonella, followed by PtChi and XhChi. In antifungal activity, XhChi showed the highest half-maximal inhibitory concentration (IC50) against Fusarium oxysporum with 0.031 mg/mL, followed by PtChi with 0.046 mg/mL, and XnChi with 0.072 mg/mL. XhChi also showed the highest IC50 against F. graminearum with 0.040 mg/mL, but XnChi was more toxic than PtChi with 0.055 mg/mL and 0.133 mg/mL, respectively. This study provides an innovative approach to the biological control of insect pests and fungal diseases of plants with the biological activity of symbiotic bacterial chitinases of entomopathogenic nematodes.


Assuntos
Bactérias , Quitinases , Inseticidas , Nematoides , Simbiose , Animais , Antifúngicos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Quitinases/genética , Quitinases/metabolismo , Escherichia coli/genética , Inseticidas/metabolismo , Nematoides/genética , Nematoides/microbiologia , Simbiose/genética , Simbiose/fisiologia , República da Coreia
10.
Arch Insect Biochem Physiol ; 115(1): e22081, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288493

RESUMO

Phospholipase A2 (PLA2 ) catalyzes phospholipids at the sn-2 position to release free fatty acids, including arachidonic acid (AA) or its precursor. The free AA is then oxygenated into different eicosanoids, which mediate the diverse physiological processes in insects. Any inhibition of the PLA2 catalysis would give rise to serious malfunctioning in insect growth and development. An onion moth, Acrolepiopsis sapporensis, encodes four different PLA2 genes (As-PLA2 A-As-PLA2 D), in which As-PLA2 A is dominantly expressed at all developmental stages and in different larval tissues. RNA interference of the As-PLA2 A expression significantly reduced the PLA2 activity of A. sapporensis, which suffered from immunosuppression. A recombinant As-PLA2 A protein was purified from a bacterial expression system, which exhibited a typical Michaelis-Menten kinetics and hence susceptible to a specific inhibitor to sPLA2 and dithiothreitol. A total of 19 bacterial metabolites derived from Xenorhabdus and Photorhabdus were screened against the recombinant As-PLA2 A. Five potent metabolites were highly inhibitory and followed a competitive enzyme inhibition. These five inhibitors suppressed the immune responses of A. sapporensis by inhibiting hemocyte-spreading behavior and phenoloxidase activity. However, an addition of AA could significantly rescue the immunosuppression induced by the selected inhibitors. These studies suggest that the recombinant As-PLA2 A protein can be applied for high-throughput screening of insect immunosuppressive compounds.


Assuntos
Fosfolipases A2 Secretórias , Animais , Spodoptera , Fosfolipases A2 Secretórias/genética , Fosfolipases A2 Secretórias/metabolismo , Eicosanoides/metabolismo , Larva/metabolismo , Insetos , Ácido Araquidônico/metabolismo
11.
Dev Comp Immunol ; 151: 105101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000489

RESUMO

Two bacterial genera, Xenorhabdus and Photorhabdus, are mutually symbiotic to the entomopathogenic nematodes, Steinernema and Heterorhabditis, respectively. The infective juveniles deliver the symbiotic bacteria to the hemocoel of target insects, in which the bacteria proliferate and help the development of the host nematode. The successful parasitism of the nematode-bacterial complex depends on host immunosuppression by the bacteria via their secondary metabolites. Leucine-responsive regulatory protein (Lrp) is a global bacterial transcriptional factor that plays a crucial role in parasitism. However, its regulatory targets to suppress insect immunity are not clearly understood. This study investigated the bacterial genes regulated by Lrp and the subsequent production of secondary metabolites in Xenorhabdus hominickii. Lrp expression occurred at the early infection stage of the bacteria in a target insect, Spodoptera exigua. A preliminary in silico screening indicated that 3.7% genes among 4075 predicted genes encoded in X. hominickii had the Lrp-response element on their promoters, including two non-ribosomal peptide synthetases (NRPSs). Eight NRPS (NRPS1-NRPS8) genes were predicted in the bacterial genome, in which six NRPS (NRPS3-NRPS8) expressions were positively correlated with Lrp expression in the infected larvae of S. exigua. Exchange of the Lrp promoter with an inducible promoter altered the production of the secondary metabolites and the NRPS expression levels. The immunosuppressive activities of X. hominickii were dependent on the Lrp expression level. The metabolites produced by Lrp expression included the eicosanoid-biosynthesis inhibitors and hemolytic factors. A cyclic dipeptide (=cPF) was produced by the bacteria at high Lrp expression and inhibited the phospholipase A2 activity of S. exigua in a competitive inhibitory manner. These results suggest that Lrp is a global transcriptional factor of X. hominickii and plays a crucial role in insect immunosuppression by modulating NRPS expression.


Assuntos
Nematoides , Xenorhabdus , Animais , Proteína Reguladora de Resposta a Leucina/metabolismo , Xenorhabdus/genética , Nematoides/metabolismo , Peptídeo Sintases/metabolismo , Fatores de Transcrição/genética , Spodoptera , Simbiose
12.
J Invertebr Pathol ; 203: 108045, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135245

RESUMO

Nanomaterials are successful due to their numerous applications in various domains such as cancer treatment, environmental applications, drug and gene delivery. Selenium is a metalloid element with broad biological activities and low toxicity especially at the nanoscale. Several studies have shown that nanoparticles synthesized from microbial and plant extracts are effective against important pests and pathogens. This study describes the bio fabrication of selenium nanoparticles using cell free extract of Xenorhabdus cabanillasii (XC-SeNPs) and assessed their mosquito larvicidal properties. Crystallographic structure and size of XC-SeNPs were determined with UV-a spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), Energy-dispersive X-ray spectroscopy (EDAX), Zeta potential and Transmission electron microscopy (TEM). The significant surface plasmon resonance at 275 nm indicated the synthesis of XC-SeNPs from the pure cell-free extract of X. cabanillasii. The XRD result exhibits the crystalline nature of XC-SeNPs. The Zeta potential analysis confirmed that the surface charge of XC-SeNPs was -24.17 mV. TEM analysis revealed that synthesized XC-SeNPs were monodispersed, spherically shaped, and sized about 80-200 nm range. In addition, the larvicidal potentials of the bio-fabricated XC-SeNPs were assessed against the 4th-instar Ae. aegypti. XC-SeNPs displayed a dose-dependent larvicidal effect; the larval mortality was 13.3 % at the minimum evaluated concentration and increased to 72 % at higher dose treatments. The LC50 and LC90 concentration of XC-SeNPs against mosquito larvae were 79.4 and 722.4 ppm, respectively.


Assuntos
Aedes , Inseticidas , Selênio , Xenorhabdus , Febre Amarela , Animais , Inseticidas/farmacologia , Inseticidas/química , Larva , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Selênio/análise , Selênio/farmacologia
13.
Braz. j. biol ; 84: e253780, 2024. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360200

RESUMO

Sugarcane crops Saccharum spp. (Poales: Poaceae) produces different derivatives to the world: sugar, ethanol and bioenergy. Despite the application of pesticides, insect pests still cause economic losses, among these the pink sugarcane mealybug Saccharicoccus sacchari (Cockerell, 1895) (Hemiptera: Pseudococcidae) causing direct and indirect damage to the plant. This study assess the virulence of three entomopathogenic nematodes (EPNs) species and their symbiont bacteria against the pink sugarcane mealybug, under laboratory conditions. Fourteen treatments represented by control (distilled water), Heterorhabditis bacteriophora Poinar, 1976 (HB EN01) (Rhabditida: Heterorhabditidae), Steinernema rarum (Doucet, 1986) (PAM25) and Steinernema carpocapsae Weiser, 1955 (All) (Rhabditida: Steinermatidae) at concentrations of 25, 50, 75 and 100 infective juveniles (IJs)/insect, and the standard chemical product, thiamethoxam, were assayed. In a second experiment, the bacteria Photorhabdus luminescens (Thomas and Poinar, 1979), Xenorhabdus szentirmaii Lengyel, 2005 and Xenorhabdus nematophila (Poinar and Thomas, 1965) (Enterobacterales: Morganellaceae) at 3.0 x 109 cells/ml were assessed for each treatment. Ten replications were stablished, each one counting ten females/mealybugs inside a 10 cm Petri dish, amounting 100 individuals/treatment. All treatments were kept under stable conditions (25±1 ºC, H 70±10%, in the dark). All nematodes species infected S. sacchari. Steinerma rarum (PAM25) provided the highest mortality against the pink sugarcane mealybug (79.25%), followed by H. bacteriophora (HB EN01) (58.25%) and S. carpocapsae (All) (42.50%) (P<0.001). The mortality rate caused by X. szentirmaii, P. luminescens and X. nematophila were 40, 45 and 20%, respectively. Steinerma rarum (PAM25) has conditions to be a potential agent to be incorporate into the integrated pest management in sugarcane.


A cultura da cana-de-açúcar Saccharum spp. (Poales: Poaceae) produz diferentes derivados para o mundo: açúcar, etanol e bioenergia. Apesar da aplicação de pesticidas, os insetos-praga ainda causam prejuízos econômicos, dentre eles a cochonilha rosada da cana-de-açúcar Saccharicoccus sacchari (Cockerell, 1895) (Hemiptera: Pseudococcidae) causando danos diretos e indiretos à planta. Este estudo avaliou a virulência de três espécies de nematoides entomopatogênicos (NEPs) e suas bactérias simbiontes contra a cochonilha rosada da cana-de-açúcar, em condições de laboratório. Quatorze tratamentos representados pelo controle (água destilada), Heterorhabditis bacteriophora Poinar, 1976 (HB EN01) (Rhabditida: Heterorhabditidae), Steinernema rarum (Doucet, 1986) (PAM25) e Steinernema carpocapsae Weiser, 1955 (All) (Rhabditida: Steinermatidae) nas concentrações de 25, 50, 75 e 100 juvenis infectantes (JIs)/inseto, e o produto químico padrão, tiametoxam, foram testados. Em um segundo experimento, a bactéria Photorhabdus luminescens (Thomas e Poinar, 1979), Xenorhabdus szentirmaii Lengyel, 2005 e Xenorhabdus nematophila (Poinar e Thomas, 1965) (Enterobacterales: Morganellaceae) em 3,0 x 109 células/ml foram avaliadas para cada tratamento. Dez repetições foram estabelecidas, cada uma contendo dez fêmeas/cochonilhas dentro de uma placa de Petri de 10 cm, totalizando 100 indivíduos/tratamento. Todos os tratamentos foram mantidos em condições estáveis (25±1 ºC, U 70±10%, no escuro). Todas as espécies de nematoides infectaram S. sacchari. Steinerma rarum (PAM25) proporcionou a maior mortalidade contra a cochonilha rosada da cana-de-açúcar (79,25%), seguida por H. bacteriophora (HB EN01) (58,25%) e S. carpocapsae (All) (42,50%) (P<0,001). As taxas de mortalidade causada por X. szentirmaii, P. luminescens e X. nematophila foram de 40, 45 e 20%, respectivamente. Steinerma rarum (PAM25) tem condições de ser um agente potencial a ser incorporado ao manejo integrado de pragas da cana-de-açúcar.


Assuntos
Animais , Controle Biológico de Vetores , Saccharum , Agricultura , Hemípteros , Nematoides
14.
J Agric Food Chem ; 72(1): 274-283, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109418

RESUMO

Xenorhabdus can produce numerous natural products, but their development has been hampered by the lack of a seamless genetic manipulation method. In this study, we compared several lethal genes and determined the sacB gene as the most effective counter-selection marker and then established a dual selection/counter-selection system by integrating neo and sacB genes into one cassette. This provides an efficient and seamless genetic manipulation method for Xenorhabdus. Using this method, DNA fragments ranging from 205 to 47,788 bp in length were seamlessly knocked out or replaced with impressively high positive rates of 80 to 100% in Xenorhabdus budapestensis XBD8. In addition, the method was successfully applied with good efficiency (45-100%) in Xenorhabdus nematophila CB6. To further validate the method, different constitutive promoters were used to replace the native fclC promoter in a batch experiment. The positivity rate remained consistently high, at 46.3%. In comparison to WT XBD8, the recombinant strain MX14 demonstrated a significant increase in the production of fabclavine 7 and fabclavine 8 by 4.97-fold and 3.22-fold, respectively, while the overall production of fabclavines was enhanced by 3.52-fold.


Assuntos
Xenorhabdus , Xenorhabdus/genética , Regiões Promotoras Genéticas
15.
Braz. j. biol ; 842024.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469342

RESUMO

Abstract Sugarcane crops Saccharum spp. (Poales: Poaceae) produces different derivatives to the world: sugar, ethanol and bioenergy. Despite the application of pesticides, insect pests still cause economic losses, among these the pink sugarcane mealybug Saccharicoccus sacchari (Cockerell, 1895) (Hemiptera: Pseudococcidae) causing direct and indirect damage to the plant. This study assess the virulence of three entomopathogenic nematodes (EPNs) species and their symbiont bacteria against the pink sugarcane mealybug, under laboratory conditions. Fourteen treatments represented by control (distilled water), Heterorhabditis bacteriophora Poinar, 1976 (HB EN01) (Rhabditida: Heterorhabditidae), Steinernema rarum (Doucet, 1986) (PAM25) and Steinernema carpocapsae Weiser, 1955 (All) (Rhabditida: Steinermatidae) at concentrations of 25, 50, 75 and 100 infective juveniles (IJs)/insect, and the standard chemical product, thiamethoxam, were assayed. In a second experiment, the bacteria Photorhabdus luminescens (Thomas and Poinar, 1979), Xenorhabdus szentirmaii Lengyel, 2005 and Xenorhabdus nematophila (Poinar and Thomas, 1965) (Enterobacterales: Morganellaceae) at 3.0 x 109 cells/ml were assessed for each treatment. Ten replications were stablished, each one counting ten females/mealybugs inside a 10 cm Petri dish, amounting 100 individuals/treatment. All treatments were kept under stable conditions (25±1 ºC, H 70±10%, in the dark). All nematodes species infected S. sacchari. Steinerma rarum (PAM25) provided the highest mortality against the pink sugarcane mealybug (79.25%), followed by H. bacteriophora (HB EN01) (58.25%) and S. carpocapsae (All) (42.50%) (P 0.001). The mortality rate caused by X. szentirmaii, P. luminescens and X. nematophila were 40, 45 and 20%, respectively. Steinerma rarum (PAM25) has conditions to be a potential agent to be incorporate into the integrated pest management in sugarcane.


Resumo A cultura da cana-de-açúcar Saccharum spp. (Poales: Poaceae) produz diferentes derivados para o mundo: açúcar, etanol e bioenergia. Apesar da aplicação de pesticidas, os insetos-praga ainda causam prejuízos econômicos, dentre eles a cochonilha rosada da cana-de-açúcar Saccharicoccus sacchari (Cockerell, 1895) (Hemiptera: Pseudococcidae) causando danos diretos e indiretos à planta. Este estudo avaliou a virulência de três espécies de nematoides entomopatogênicos (NEPs) e suas bactérias simbiontes contra a cochonilha rosada da cana-de-açúcar, em condições de laboratório. Quatorze tratamentos representados pelo controle (água destilada), Heterorhabditis bacteriophora Poinar, 1976 (HB EN01) (Rhabditida: Heterorhabditidae), Steinernema rarum (Doucet, 1986) (PAM25) e Steinernema carpocapsae Weiser, 1955 (All) (Rhabditida: Steinermatidae) nas concentrações de 25, 50, 75 e 100 juvenis infectantes (JIs)/inseto, e o produto químico padrão, tiametoxam, foram testados. Em um segundo experimento, a bactéria Photorhabdus luminescens (Thomas e Poinar, 1979), Xenorhabdus szentirmaii Lengyel, 2005 e Xenorhabdus nematophila (Poinar e Thomas, 1965) (Enterobacterales: Morganellaceae) em 3,0 x 109 células/ml foram avaliadas para cada tratamento. Dez repetições foram estabelecidas, cada uma contendo dez fêmeas/cochonilhas dentro de uma placa de Petri de 10 cm, totalizando 100 indivíduos/tratamento. Todos os tratamentos foram mantidos em condições estáveis (25±1 ºC, U 70±10%, no escuro). Todas as espécies de nematoides infectaram S. sacchari. Steinerma rarum (PAM25) proporcionou a maior mortalidade contra a cochonilha rosada da cana-de-açúcar (79,25%), seguida por H. bacteriophora (HB EN01) (58,25%) e S. carpocapsae (All) (42,50%) (P 0,001). As taxas de mortalidade causada por X. szentirmaii, P. luminescens e X. nematophila foram de 40, 45 e 20%, respectivamente. Steinerma rarum (PAM25) tem condições de ser um agente potencial a ser incorporado ao manejo integrado de pragas da cana-de-açúcar.

16.
Access Microbiol ; 5(10)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970093

RESUMO

Several species of soil-dwelling Steinernema nematodes are used in the biocontrol of crop pests, due to their natural capacity to kill diverse lepidopteran species. Although this insect-killing trait is known to be augmented by the nematodes' Xenorhabdus endosymbionts, the role of other steinernematid-associated bacterial genera in the nematode lifecycle remains unclear. This genomic study aimed to determine the potential of Pseudomonas piscis to contribute to the entomopathogenicity of its Steinernema host. Insect larvae were infected with three separate Steinernema cultures. From each of the three treatments, the prevalent bacteria in the haemocoel of cadavers, four days post-infection, were isolated. These three bacterial isolates were morphologically characterised. DNA was extracted from each of the three bacterial isolates and used for long-read genome sequencing and assembly. Assemblies were used to delineate species and identify genes that encode insect toxins, antimicrobials, and confer antibiotic resistance. We assembled three complete genomes. Through digital DNA-DNA hybridisation analyses, we ascertained that the haemocoels of insect cadavers previously infected with Steinernema sp. Kalro, Steinernema sp. 75, and Steinernema sp. 97 were dominated by Xenorhabdus griffiniae Kalro, Pseudomonas piscis 75, and X. griffiniae 97, respectively. X. griffiniae Kalro and X. griffiniae 97 formed a subspecies with other X. griffiniae symbionts of steinernematids from Kenya. P. piscis 75 phylogenetically clustered with pseudomonads that are characterised by high insecticidal activity. The P. piscis 75 genome encoded the production pathway of insect toxins such as orfamides and rhizoxins, antifungals such as pyrrolnitrin and pyoluteorin, and the broad-spectrum antimicrobial 2,4-diacetylphloroglucinol. The P. piscis 75 genome encoded resistance to over ten classes of antibiotics, including cationic lipopeptides. Steinernematid-associated P. piscis bacteria hence have the biosynthetic potential to contribute to nematode entomopathogenicity.

17.
Microbiol Spectr ; 11(6): e0142223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37787562

RESUMO

IMPORTANCE: As a current biocontrol resource, entomopathogenic nematodes and their symbiotic bacterium can produce many toxin factors to trigger insect sepsis, having the potential to promote sustainable pest management. In this study, we found Steinernema feltiae and Xenorhabdus bovienii were highly virulent against the insects. After infective juvenile injection, Galleria mellonella quickly turned black and softened with increasing esterase activity. Simultaneously, X. bovienii attacked hemocytes and released toxic components, resulting in extensive hemolysis and sepsis. Then, we applied high-resolution mass spectrometry-based metabolomics and found multiple substances were upregulated in the host hemolymph. We found extremely hazardous actinomycin D produced via 3-hydroxyanthranilic acid metabolites. Moreover, a combined transcriptomic analysis revealed that gene expression of proteins associated with actinomycin D was upregulated. Our research revealed actinomycin D might be responsible for the infestation activity of X. bovienii, indicating a new direction for exploring the sepsis mechanism and developing novel biotic pesticides.


Assuntos
Dípteros , Rabditídios , Sepse , Animais , Dactinomicina , Insetos , Rabditídios/microbiologia , Simbiose
18.
J Appl Microbiol ; 134(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37656887

RESUMO

AIMS: Black scurf disease, caused by Rhizoctonia solani, is a severe soil-borne and tuber-borne disease, which occurs and spreads in potato growing areas worldwide and poses a serious threat to potato production. New biofungicide is highly desirable for addressing the issue, and natural products (NPs) from Xenorhabdus spp. provide prolific resources for biofungicide development. In this study, we aim to identify antifungal NPs from Xenorhabdus spp. for the management of this disease. METHODS AND RESULTS: Out of the 22 Xenorhabdus strains investigated, Xenorhabdus budapestensis 8 (XBD8) was determined to be the most promising candidate with the measured IC50 value of its cell-free supernatant against R. solani as low as 0.19 ml l-1. The major antifungal compound in XBD8 started to be synthesized in the middle logarithmic phase and reached a stable level at stationary phase. Core gene deletion coupled with high-resolution mass spectrometry analysis determined the major antifungal NPs as fabclavine derivatives, Fcl-7 and 8, which showed broad-spectrum bioactivity against important pathogenic fungi. Impressively, the identified fabclavine derivatives effectively controlled black scurf disease in both greenhouse and field experiments, significantly improving tuber quality and increasing with marketable tuber yield from 29 300 to 35 494 kg ha-1, comparable with chemical fungicide fludioxonil. CONCLUSIONS: The fabclavine derivatives Fcl-7 and 8 were determined as the major antifungal NPs in XBD8, which demonstrated a bright prospect for the management of black scurf disease.


Assuntos
Produtos Biológicos , Caspa , Xenorhabdus , Humanos , Antifúngicos
19.
Microbiol Resour Announc ; 12(10): e0054823, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37712678

RESUMO

Xenorhabdus species are bacterial symbionts of entomopathogenic Steinernema nematodes, in which they produce diverse secondary metabolites implicated in pathogenesis. To expand resources for natural product prospecting and exploration of host-symbiont-pathogen relationships, the genomes of Xenorhabdus cabanillasi, Xenorhabdus ehlersii, Xenorhabdus japonica, Xenorhabdus koppenhoeferii, and Xenorhabdus mauleonii were analyzed.

20.
Antibiotics (Basel) ; 12(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37760758

RESUMO

Anti-microbial peptides provide a powerful toolkit for combating multidrug resistance. Combating eukaryotic pathogens is complicated because the intracellular drug targets in the eukaryotic pathogen are frequently homologs of cellular structures of vital importance in the host organism. The entomopathogenic bacteria (EPB), symbionts of entomopathogenic-nematode species, release a series of non-ribosomal templated anti-microbial peptides. Some may be potential drug candidates. The ability of an entomopathogenic-nematode/entomopathogenic bacterium symbiotic complex to survive in a given polyxenic milieu is a coevolutionary product. This explains that those gene complexes that are responsible for the biosynthesis of different non-ribosomal templated anti-microbial protective peptides (including those that are potently capable of inactivating the protist mammalian pathogen Leishmania donovanii and the gallinaceous bird pathogen Histomonas meleagridis) are co-regulated. Our approach is based on comparative anti-microbial bioassays of the culture media of the wild-type and regulatory mutant strains. We concluded that Xenorhabdus budapestensis and X. szentirmaii are excellent sources of non-ribosomal templated anti-microbial peptides that are efficient antagonists of the mentioned pathogens. Data on selective cytotoxicity of different cell-free culture media encourage us to forecast that the recently discovered "easy-PACId" research strategy is suitable for constructing entomopathogenic-bacterium (EPB) strains producing and releasing single, harmless, non-ribosomal templated anti-microbial peptides with considerable drug, (probiotic)-candidate potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...